Abstract

Xanthene dye molecules form a chelate complex with the titanium species on the titania surface in dye−titania systems. The complex formation causes a fast electron injection into the titania conduction band. In this study, simple spectroscopic and photocurrent measurements of the xanthene dye-doped titania gels prepared by the sol−gel method were conducted in order to clarify the influence of a steam treatment on the dye−titania interaction and electron transfer. The photocurrent quantum efficiency of the fluorescein-doped electrode was remarkably increased by the steam treatment compared to that of the untreated electrode consisting of an amorphous titania gel. The photocurrent action spectrum was red-shifted, and the short circuit photocurrent and open circuit voltage values increased with the steam treatment time. The steam treatment promoted the dye−titania complex formation, a negative shift in the conduction band potential of the titania, and the electron injection from the dye to the titania.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call