Abstract

We recently reported on a proof-of-principle experiment demonstrating optical trapping of an ion in a single-beam dipole trap superimposed by a static electric potential [Nat. Photonics 4, 772--775 (2010)]. Here, we first discuss the experimental procedures focussing on the influence and consequences of the static electric potential. These potentials can easily prevent successful optical trapping, if their configuration is not chosen carefully. Afterwards, we analyse the dipole trap experiments with different analytic models, in which different approximations are applied. According to these models the experimental results agree with recoil heating as the relevant heating effect. In addition, a Monte-Carlo simulation has been developed to refine the analysis. It reveals a large impact of the static electric potential on the dipole trap experiments in general. While it supports the results of the analytic models for the parameters used in the experiments, the analytic models cease their validity for significantly different parameters. Finally, we propose technical improvements for future realizations of experiments with optically trapped ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.