Abstract

The influence of a static homogeneous electric field on the vapour–liquid equilibrium of dipolar soft-sphere fluids has been studied by the Gubbins–Pople–Stell perturbation theory. The thermodynamic properties of the fluid as functions of the field strength were derived from the Helmholtz energy containing the field-dependent relative permittivity. The dielectric saturation was studied by a perturbation theoretical treatment of the Kirk-wood equation. Our calculations can yield a weak negative saturation. It was found that the critical quantities increase, while the temperature range of the phase coexistence narrows with the field strength. A comparison between our electrostriction results and simulation data shows reasonable agreement at low field strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.