Abstract

The influence of alloying elements on the stacking fault energy (SFE) of Mg–Y–Zn–Zr alloys was calculated by using first-principles, and the microstructure of as-cast Mg-1.05Y-0.79Zn-0.07Zr (mole fraction, %) alloy prepared by conventional casting was investigated by SEM, TEM and HRTEM. The block-like long period stacking ordered (LPSO) phase, the lamellar LPSO phase and stacking faults were observed simultaneously and the lamellar LPSO structure and stacking faults were both formed on (0001)α-Mg habit plane and grown or extended along [01i0]α-Mg direction. The calculation results by the first-principles showed that the addition of Y can sharply decrease the stacking fault energy of the Mg–Zn–Y–Zr alloy, while Zn slightly increases the stacking fault energy of the alloy. The influence of stacking fault energy on the formation of LPSO was discussed. It shows that LPSO may nucleate directly through stacking faults and the lower stacking fault energy was in favor of formation of LPSO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.