Abstract

By means of calculating stacking fault energy (SFE), measuring creep properties and contrast analysis of dislocation configuration, an investigation has been made into the influence of the stacking fault energy on the creep mechanism of the single crystal nickel-based superalloy. Results show that the alloy at 760¡æ has a lower stacking fault energy (SFE), and the SFE of the alloy increases with the temperatures. The deformed mechanism of the alloy during creep at 760¡æ is the cubical γ′ phase sheared by <110> super-dislocation which may be decomposed to form the configuration of (1/3)<112> super-Shockley partials dislocation plus the superlattice intrinsic stacking fault (SISF). The deformed mechanism of the alloy which possesses the higher SFE at 1070¡æ is the screw or edge super-dislocation shearing into the rafted γ′ phase. The SFE of the alloy at 980¡æ is intervenient between the ones of 760¡æ and 1070¡æ, the deformation mechanism of the alloy during creep is the rafted γ′ phase sheared by <110> screw and edge super-dislocations which may be decomposed into the configuration of (1/2)<110> partial dislocation plus APB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.