Abstract

The acute toxicity of polymer-coated CdSe/ZnS quantum dots (QDs) to Daphnia magna was investigated using 48-h exposure studies. The principal objective was to relate the toxicity of QDs to specific physical and chemical aspects of the QD. As such, two different CdSe core diameters, 2 nm QDs (green-emitting) and 5 nm QDs (red-emitting), and two different surface coatings, polyethylene oxide (PEO) and 11-mercaptoundecanoic acid (MUA) were studied. The QDs were characterized before and after the 48-h exposure using fluorescence, ultrafiltrations (3 kDa), and inductively coupled plasma-atomic emission spectrometry (ICP-AES) metal analysis. In addition, flow field flow fractionation-inductively coupled plasma-mass spectrometry (Fl FFF-ICP-MS) was used as a more extensive characterization technique to determine particle size and composition as well as identify other potential constituents in the QD solutions. The more stable QDs (PEO) were found to be less acutely toxic than the QDs with accelerated dissolution (MUA), suggesting QD stability has significant impact on the nanoparticles' short-term toxicity. The emergence of dissolved Cd(2+) in solution indicates that the toxicity of the MUA QDs is likely due to Cd poisoning, and a mass-based dose response occurred as a consequence of this mode of action. Alternatively, the PEO QDs caused acute toxicity without observed particle dissolution (i.e., no detectable metals were solubilized), suggesting an alternative mode of toxic action for these nanoparticles. Results of the present study suggest that using particle number, instead of mass, as a dose metric for the PEO QDs, produces markedly different conclusions, in that smaller core size does not equate to greater toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call