Abstract

The critical velocity is an important parameter in cold spraying, which determines the deposition efficiency under a given spray condition. The critical velocity depends not only on materials types, but also on particle temperature and oxidation conditions. In the present paper, three types of materials including copper, 316L stainless steel, Monel alloy were used to deposit coatings by cold spraying. The critical velocities of spray materials were determined using a novel measurement method. The oxygen content in the three powders was changed by isothermal oxidation at ambient atmosphere. The effect of oxygen content on the critical velocity was examined. It was found that the critical velocity in cold spray was significantly influenced by particle oxidation condition besides materials properties. The critical velocity of Cu particles changed from about 300 m/s to over 610 m/s with the change of oxygen content in powder. It is evident that the materials properties influence the critical velocity more remarkable at low oxygen content than at high oxygen content. The results suggest that with a severely oxidized powder the critical velocity tends to be dominated by oxide on the powder surface rather than materials properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call