Abstract

Abstract The utilization of mulch stands as a paramount approach in the management of wind erosion and the stabilization of soil and drifting sands. This study aimed to explore the impact of various concentrations of spent liquor (20 %, 30 %, and 50 % v/v) derived from SO2–ethanol–water (SEW) fractionation of Eucalyptus wood on the physical and mechanical properties of sand. These properties encompassed moisture content, thickness, temperature, electrical conductivity (EC), wind erodibility, penetration resistance, and seed germination. The findings revealed that the highest compressive strength (0.76 MPa) was attained with mulch consisting of 50 % SEW spent liquor, resulting in a 3.3-fold increase in penetration resistance compared to the control treatment. Furthermore, the 20 % concentration of spent liquor did not adversely affect the germination of black saxaul (Haloxylon ammodendron), whereas the lowest seed germination rate was associated with the 50 % concentration. Based on the measured parameters, the optimal mulch treatment for stabilizing drifting sands was identified as mulch with a 50 % (v/v) concentration. This study underscores the efficacy of SEW spent liquor in dust control and mitigating its environmental impacts, thus highlighting its potential in sustainable soil management practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call