Abstract

In this paper, we numerically study the influence of the speed variation of a magnetic source on the distribution of current density, magnetization, and dissipated energy of a high-temperature superconducting cylinder described by a Jn power law. The results presented come from the resolution of a nonlinear diffusion problem of electric field by a mixed finite-element finite-volume discretization method. This method is robust, stable, and converges for large values of n. The calculations carried out for n, varying from 1 to 200, show that when the external magnetic field quickly varies from 0 to its maximal value, the maximum values of penetration, the magnetization, and the energy dissipation are obtained when the switching of magnetic field occurs. For a periodic magnetic field, we note that any change of the period results in variation of the magnetization and the dissipated energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.