Abstract

Miniature tensile specimens, having various sizes and geometries, are often used to measure the mechanical properties of bulk nanostructured materials. However, these samples are generally too small for use with conventional extensometers so that the strains are usually calculated from the crosshead displacements. This study uses experimental results and finite element modeling (FEM) to critically evaluate the influence of the specimen dimensions and strain measurement methods on the tensile curves obtained from miniature specimens. Using coarse-grained Cu as a model material, the results demonstrate that the values of strain obtained from the crosshead displacement are critically influenced by the specimen dimensions such that the uniform elongation and the post-necking elongation both increase with decreasing gauge length and increasing specimen thickness. The results provide guidance on the optimum procedures for the tensile testing of miniature specimens of both coarse-grained and nanostructured materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.