Abstract

The evaluation of water sorption and solubility is pivotal for the development of new resin-based restorative materials with the potential for clinical application. The purpose of the present study was to evaluate the influence of the specimen dimension, water immersion protocol, and surface roughness on the water sorption and solubility of three resin-based restorative materials. Disk-shaped specimens of 15 mm × 1 mm, 10 mm × 1 mm, and 6 mm × 1 mm were produced with a composite resin (Z100), a resin cement (RelyX ARC), and an adhesive system (Single Bond 2-SB2). The specimens were immersed in distilled water according to four protocols: ISO (all the specimens for each group were vertically immersed in 50 mL); IV-10 (the specimens were individually and vertically immersed in 10 mL); IH-10 (the specimens were individually and horizontally immersed in 10 mL); and IH-2 (the specimens were individually and horizontally immersed in 2 mL). The surface roughness (Sa and Sp) was evaluated using an atomic force microscope, and the degree of conversion was determined using FT-IR spectrometry. The specimen dimension and water immersion protocol had no effect on water sorption and solubility. For the three resin-based restorative materials, Sp was higher than Sa. The degree of conversion was not influenced by the specimen dimension. The variations in the specimen dimension and water immersion protocol compared to those determined by ISO 4049 did not prevent the comparison between the values of water sorption and solubility obtained for a given resin-based restorative material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call