Abstract

The corrosion behavior and mechanism of as-cast and as-extruded Mg-Zn-Gd-Zr alloys with specific ternary phases are investigated using scanning electron microscope (SEM), scanning Kelvin probe force microscope (SKPFM), immersion and electrochemical tests. Lamellar X-Mg12GdZn, net-like W-Mg3Gd2Zn3 and strip-like I-Mg3Zn6Gd phases form successively. The eutectic W-phase owns the highest potential difference of 120 mV with Mg matrix, accelerating micro-galvanic corrosion. Continuously distributed and undersized I-phase leads to uniform corrosion. The as-extruded Mg-3Zn-11Gd-0.6 Zr alloy exhibits superior corrosion resistance, due to the relatively low potential difference between X-phase and matrix, the corrosion barrier effect and typical {0002} <10−10> texture components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.