Abstract
The relationship between transverse relaxation time (T₂) and pore size distribution is the basis of NMR applications for rocks. However, the equations for T₂ are not accurate enough in rocks with complicated pore structures. Taking pebbly sandstone from the northwestern Junggar Basin in China as an example, the aim of this study is to discover the spatial distribution of pores and its influence on T₂. Porosity, permeability, micro-images and T₂ distributions were acquired from rock samples, and pore structure parameters were obtained from binarized thin section images. The results show that as the grain size increases, the proportion of dissolution pores increases and the spatial distribution of pores changes from a random to a clustered pattern. The relaxation of a hydrogen atom takes longer and T₂ is higher in dissolution pores compared with those in intergranular pores. New equations for T₂ that consider the spatial distribution of pores are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.