Abstract

The effect of sintering temperature on the densification mechanisms, microstructural evolution and mechanical properties of spark plasma sintered (SPS) compacts of a gas atomized Al-4.5 wt.%Cu alloy was investigated. The powder particles whose size varied between 10 to 500 µm was subjected to SPS at 400, 450 and 500 °C at a pressure of 30 MPa. The compact sintered at 500 °C exhibited fully dense microstructure which was characterized by a uniform distribution of the secondary phase, free of dendrites and micro-porosity. Microscopy and the SPS data reveal that the events such as particle rearrangement, localized deformation and bulk deformation appear to be the sequence of sintering mechanisms depending on the size range of powder particles used for consolidation. The compact sintered at 500 °C exhibited the highest hardness and compression strength since the microstructure was characterized by fine distribution of precipitates, large fraction of submicron grains and complete metallurgical bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call