Abstract

Abstract Ti-6Al-4V/TiN composites were successfully consolidated by spark plasma sintering (SPS). TiN addition to Ti-6Al-4V was varied from 1% to 5% (volume fraction). The effect of TiN addition on the densification, microstructure, microhardness and wear behaviour of Ti-6Al-4V was studied. Experimental results showed reduction in sintered density of the compacts from 99% to 97% with increase in TiN content. However, an increase in microhardness value was recorded from HV0.1 389 to HV0.1 488. X-ray diffraction (XRD) analysis showed that the intensity of diffraction peaks of TiN phase in the composites increased also with formation of small amount of secondary Ti2N phase. SEM analysis of SPS sintered nanocomposites possessed a refinement of α/β phase microstructure in Ti-6Al-4V with the presence of uniformly dispersed TiN particles. The worn surface of the composite showed improved abrasive wear resistance with non-continuous grooves as compared to the sintered Ti-6Al-4V without TiN addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call