Abstract

A grand canonical multiscale space-charge model has been developed to study and predict the electrical properties of polycrystalline perovskites with complex defect chemistries. This model combines accurate data from hybrid exchange-correlation functional density functional theory calculations (defect formation energies, resultant grand canonical calculations of defect concentrations, and ionization states) with finite-element simulation of the electric field and its coupling to defect redistribution and reionization throughout the grain. This model was used to simulate the evolution of the oxygen partial pressure-dependent conductivity of polycrystalline acceptor-doped strontium titanate as the grain size decreases, and the results were compared to previous experiments. These results demonstrate that as the grain size is reduced from the microscale to nanoscale, the experimentally observed disappearance of ionic conductivity and forward shift of the oxygen partial pressure of the n–p crossover are successfully reproduced and explained by the model. Mechanistically, the changes to conductivity stem from the charge transfer from the grain boundary core into the grain interior, forming a space-charge layer near the grain boundary core that perturbs the local defect chemistry. The impact of the grain size on the electrical conductivity and the underlying defect chemistry across the grain are discussed. In addition to the findings herein, the model itself enables exploration of the electrical response of polycrystalline semiconductor systems with complex defect chemistries, which is critical to the design of future electronic components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.