Abstract

Abstract 4H-SiC n-channel power metal semiconductor field-effect transistors (MESFETs) with nitrogen n+-implanted source/drain ohmic contact regions, with and without p-buffer layer fabricated on semi-insulating substrates exhibited hysteresis in the drain I-V characteristics of both types of devices at 300 K and 480 K due to traps. However, thermal spectroscopic measurements could detect the traps only in the devices without p-buffer. Device simulation and optical admittance spectroscopy (OAS) are used to resolve the discrepancy in the initial experimental characterization results. Device simulations and OAS suggest that, in addition to the semi-insulating (SI) substrate traps, acceptor traps due to source/drain residual implant lattice damage contribute to the hysteresis observed in the drain I-V characteristics of the devices. Simulations suggest these traps are contained in the lateral straggle of the implanted source and drain regions since the drain current largely flows between the un-gated edges of the source and drain through the volume of lateral straggle traps. Since hysteresis in I-V curves is a manifestation of the presence of defects in devices and since defects degrade carrier mobility and hence device performance, efforts should be made to minimize the source/drain lateral straggle implant damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.