Abstract

In the present study, Ca, Ni, V, and Zn were added to a high purity binary Al-7wt pct Si and commercial purity A356 foundry alloy in the nominal range of 50 to 600 ppm in order to study their effect on the solidification path and the resultant microstructure. Thermal analysis was used to assess nucleation and growth of the various phases. It was found that Ca and Ni additions suppress characteristic temperatures associated with nucleation and growth of the eutectic by up to 4 and 1.5 K, respectively. Additionally, Ca was observed to modify the eutectic Si and a concentration as low as 39 ppm Ca was sufficient to precipitate the geometrically unfavored polyhedral Al2Si2Ca phase. Furthermore, Ni addition resulted in the formation of two intermetallic phases when the Ni concentration exceeded 300 ppm. These phases have been quantified as Al3Ni and Al9FeNi by SEM-EDS. V and Zn had no apparent effect on the cooling curve and the microstructure. Even though it could be shown that V accumulates preferably in β-Al5FeSi particles, V concentrations of 600 ppm were too low to have any influence on the phase’s morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.