Abstract

This work reports a theoretical investigation of the solvent polarity as well as the halogenation of benzimidazole derivatives during excited state intramolecular proton transfer (ESIPT). It details how the environment and halogen substitution may contribute to the efficiency of ESIPT upon keto-enol tautomerism and exploits this effect to design fluorescence sensing. For this purpose, we first examine the conformational equilibrium of benzimidazole derivatives containing different halogen atoms, which results in intramolecular proton transfer, using density-functional theory (DFT) combined with the polarizable continuum model (PCM). Then we evaluate the fluorescence of the benzimidazole derivatives in different dielectric constants within time-dependent DFT (TD-DFT) approaches. Our results quantitatively allow the determination of large Stokes shifts in nonpolar solvents around 100 nm. These theoretical results are in agreement with experimental solvatochromism studies of benzimidazoles. The effect of halogenation, with fluorine, chlorine, and bromine, is less important than solvent polarization when ESIPT takes place. Thus, halogenation can be properly chosen depending on the interest of the synthesis of benzimidazole-based turn-on fluorescence in appropriate solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call