Abstract

A thorough understanding of the microscopic mechanism of excited-state proton transfer (ESPT) and the influence of the solvent environment on its dynamics are of great fundamental interest. We present here a detailed investigation of an ESPT to solvent (DMSO) using time-resolved broadband fluorescence and transient absorption spectroscopies. All excited-state species are resolved spectrally and kinetically using a global target analysis based on the two-step Eigen-Weller model. Reversibility of the initial short-range proton transfer producing excited contact ion pairs (CIP*) is observed unambiguously in fluorescence and must be explicitly considered to obtain the individual rate constants. Close inspection of the early dynamics suggests that the relative populations of the protonated form (ROH*) and CIP* are governed by solvent relaxation that influences the relative energies of the excited states. This constitutes a breakdown of the Eigen-Weller model, although the overall agreement between the data and the analysis using classical rate equations is excellent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.