Abstract

Solutions of interacting linear polymers are mapped onto a system of "soft" spherical particles interacting via an effective pair potential. This coarse-graining reduces the individual monomer-level description to a problem involving only the center of mass (c.m.) of the polymer coils. The effective pair potentials are derived by inverting the c.m. pair distribution function, generated in Monte Carlo simulations, using the hypernetted chain closure. The method, previously devised for the self-avoiding walk model of polymers in good solvent, is extended to the case of polymers in solvents of variable quality by adding a finite nearest-neighbor monomer-monomer attraction to the previous model and varying the temperature. The resulting effective pair potential is found to depend strongly on temperature and polymer concentration. At low concentration the effective interaction becomes increasingly attractive as the temperature decreases, eventually violating thermodynamic stability criteria. However, as polymer concentration is increased at fixed temperature, the effective interaction reverts to mostly repulsive behavior. These issues help to illustrate some fundamental difficulties encountered when coarse-graining complex systems via effective pair potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.