Abstract

Pattern formation often reveals constituent nonlinear mechanisms of a complex system. Here, we study self-synchronizing, light-induced thermal cycles in plasmonically absorbing nanofluids, whose anomalous thermal, optomechanical, electrochemical, and hydrodynamic responses are not yet well understood. We show that the oscillatory behavior—caused by light grazing the nanofluid meniscus—exhibits a strong dependence on hydrogen bonding in the solvent environment and that there are low-intensity optical thresholds in alcohol–water binary-solvent nanofluids. Moreover, these thermal cycles occur with a periodic, vertically discharging heat-dissipation mechanism, which could be facilitated by nanobubbles or thermophoresis. We show that an incoherent white-light source, such as sunlight, will also induce self-synchronizing thermal cycles; in this demonstration, we illustrate new methods of energy storage, transfer, and harvesting that will not alter the natural carbon cycle of life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.