Abstract

Numerous strategies have been devised to register organosilane monolayers for applications ranging from lubricants to semiconductor surface resists. Of these patterning techniques, particle lithography offers a straightforward and high-throughput method to create periodic arrays of organosilane nanopatterns. Herein, we describe the influence of solvent on the solution-phase formation of periodic arrays of nanopores within octadecyltrichlorosilane (OTS) monolayers using particle lithography. Our systematic study of various compositions of two miscible solvents, anhydrous toluene and bicyclohexyl, demonstrates control over nanopore size and OTS surface coverage. Smaller nanopores are generated from solutions with higher anhydrous toluene composition, and larger nanopores are generated from solutions with higher bicyclohexyl composition. A study of the effect of deposition time on nanopore formation found that at shorter deposition times (<5 min), the nanopore size is limited by diffusion into the water meni...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call