Abstract

New alkynyl complexes [Pt2M4{CC(3-OMe)C6H4}8] (M = Ag 1, Cu 2) have been synthesized and their structures and properties compared to those of related [Pt2M4(CCPh)8] compounds. For the Pt-Ag derivatives, the X-ray structures of the discrete yellow solvate monomer, [Pt2Ag4{CC(3-OMe)C6H4}8].2THF ([1.2THF]), and the dark garnet unsolvated polymeric form, [Pt2Ag4{CC(3-OMe)C6H4}8](infinity) ([1](infinity)), are presented. The yellow form ([1.2THF]) exhibits a distorted octahedral geometry of the metal centers with the platinum atoms mutually trans and the four silver atoms in the equatorial plane. Pairs of Ag atoms are weakly bridged by THF molecules [mu-Ag2...O(THF)]. The garnet form ([1](infinity)) has an unprecedented infinite stacked chain of octahedral clusters linked by short Pt...Pt bonds (3.1458(8) A). In both forms, different types of weak C-H...O (OMe) hydrogen bonds are observed. For comparative purposes, we have also provided the crystal structures of the yellow monomer form, [Pt2Ag4-(CCPh)8].CHCl3, and the red dimer form, [Pt2Ag4(CCPh)8]2 (Pt-Pt 3.221(2) A). These clusters display intense photoluminescence in both solution and the solid state, at room temperature and 77 K. The emission observed for the yellow form [1.2THF] in the solid state is assigned to a 3MLM'CT [Pt(d)/pi(CCR) --> Pt(p(z))/Ag(sp)/pi(CCR)] state modified by Pt...Ag, Ag...Ag, and Ag...(THF) contacts. However, in the garnet form [1](infinity) and in 2, the emissions are related to the axial Pt-Pt bonds and are assigned as phosphorescence from a metal-metal-to-ligand charge-transfer (3MMLCT) excited state ([1](infinity)), or an admixture of a metal-metal (Pt-Pt) centered 3(dsigmap(z)sigma) and 3MMLCT excited state (2). For 1, a remarkable quenching and a shift to higher energies in the emission is observed on changing from CH2Cl2 to THF, and for both 1 and 2, the emission spectra at 77 K varies with the concentration, showing their tendency to stack even in glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.