Abstract

In order to investigate the influence of the body temperature of contacting solids on the lubrication performance of machine components, such as gears and roller bearings, a full numerical solution for the thermal elastohydrodynamic lubrication (EHL) problem in circular contacts under steady state has been achieved. The analysis assumed that the body temperature is different from the temperature of the supplied lubricating oil. The effects of the body temperature, the slide-roll ratio, and the velocity parameter have been discussed. Results show that if the entrainment velocity is not very high, the solid body temperature plays a dominant role in the EHL behavior; however, the influence of the body temperature decreases as the entrainment velocity increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call