Abstract

A greenhouse study was conducted to determine the influence of soil water potential and endomycorrhizal fungi on root growth of yellow-poplar (Liriodendrontulipifera L.) and sweet gum (Liquidambarstyraciflua L.) seedlings grown at three soil bulk densities. Silt loam soil was compacted in PVC pots to bulk densities of 1.25 (low), 1.40 (medium), or 1.55 (high) Mg • m−3, and equilibrated at −10 kPa soil water potential. Newly germinated seedlings were transplanted into the pots, inoculated with fungal chlamydospores of Glomusmacrocarpum or Glomusfasciculaturn, or distilled water (control), and grown for 3 months at −10 or −300 kPa soil water potential. Total porosity, air-filled porosity, water content, and mechanical resistance of the soil were determined for samples compacted to the same bulk densities and equilibrated at the same soil water potentials as were used in the greenhouse study. Root growth was reduced by the high mechanical resistance caused by bulk densities of 1.40 and 1.55 Mg • m−3 at −300 kPa water potential. At both water potentials, total length of lateral roots and fibrosity of the root system of both tree species decreased significantly when bulk density increased from 1.40 to 1.55 Mg • m−3. Air-filled porosity less than 0.12 m3 • m−3 limited root growth when water potential was −10 kPa, and mechanical resistance greater than 3438 kPa restricted growth at −300 kPa. At −10 kPa, root length and fibrosity were greatest for inoculated sweet gum seedlings at each bulk density. At −300 kPa, sweet gum seedlings inoculated with G. fasciculatum had the greatest root length and fibrosity at the low and medium bulk densities. Mycorrhizal effects on root length of yellow-poplar were variable, and fibrosity was not significantly affected by mycorrhizal treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.