Abstract

This paper presents a field study on the uplift bearing capacity of a pre-stressed high-strength concrete (PHC) pile embedded in clayey soil, and on the soil around the PHC pile that was treated with cement paste. The PHC pile was inserted into a pile hole filled with cemented soil by its own weight (by gravity), and the soil compaction effect of a conventionally driven pile induced by the installation process was avoided. The test results showed that: the pile head displacement needed to fully mobilize the uplift bearing capacity of the test piles was about 0.1 D (pile diameter); the ultimate skin friction of the PHC pile–cemented soil interface was much larger than that of the cemented soil–soil interface; the PHC pile and the cemented soil around the pile behaved as an integral pile in the load transfer process; and the measured ultimate bearing capacity of the test piles was 0.91–0.94 times the American Petroleum Institute (API)’s proposed values for piles under compression and 0.79–0.80 times the values calculated with the effective stress method for piles under compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call