Abstract
AbstractThe influence of soil moisture on the surface-layer atmosphere is examined in this paper by analyzing the outputs of model simulations for different initial soil moisture configurations, with particular emphasis on urban microclimate. In addition to a control case, four different soil moisture distributions within the urban and surrounding rural areas are considered in this study. Outputs from the Global Environmental Multiscale atmospheric model simulations are compared with observations from the Joint Urban 2003 experiment held in Oklahoma City, Oklahoma, and the relevant conclusions drawn in this paper are therefore valid for similar medium-size cities. In general, high soil moisture is found to be associated with colder near-surface temperature and lower near-surface wind speed, whereas drier soil resulted in warmer temperatures and enhanced low-level wind. Relative to urban soil moisture content, rural soil conditions are predicted to have larger impacts on both rural and urban surface-layer meteorological conditions. Dry rural and wet urban soil configurations are shown to have a strong influence on the urban–rural temperature contrast and resulted in city-induced secondary circulations that considerably affect the near-surface wind speed. Dry rural soil in particular is found to intensify the nocturnal low-level jet and significantly affect the thermal stability of nocturnal near-neutral urban surface layer by altering both thermal and mechanical generation of turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.