Abstract

A bacterium designated strain BD-a59, able to degrade all six benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) compounds, was isolated by plating gasoline-contaminated sediment from a gasoline station in Geoje, Republic of Korea, without enrichment, on minimal salts basal (MSB) agar containing 0.01% yeast extract, with BTEX as the sole carbon and energy source. Taxonomic analyses showed that the isolate belonged to Pseudoxanthomonas spadix, and until now, the genus Pseudoxanthomonas has not included any known BTEX degraders. The BTEX biodegradation rate was very low in MSB broth, but adding a small amount of yeast extract greatly enhanced the biodegradation. Interestingly, degradation occurred very quickly in slurry systems amended with sterile soil solids but not with aqueous soil extract. Moreover, if soil was combusted first to remove organic matter, the enhancement effect on BTEX biodegradation was lost, indicating that some components of insoluble organic compounds are nutritionally beneficial for BTEX degradation. Reverse transcriptase PCR-based analysis of field-fixed mRNA revealed expression of the tmoA gene, whose sequence was closely related to that carried by strain BD-a59. This study suggests that strain BD-a59 has the potential to assist in BTEX biodegradation at contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.