Abstract

Hydrothermally grown ZnO nanorods were doped with various concentrations of Sn, ranging from 0 to 2.5 at%. Scanning electron microscopy (SEM), X-ray diffractometer (XRD), ultraviolet (UV)-visible spectroscopy, and Photoluminescence (PL) measurements were used to determine the effect of Sn doping on the structural and optical properties. In the SEM images, the nanorods have hexagonal wurtzite structure and the diameter of the nanorods increases with an increase in the Sn content. The optical parameters of the Sn-doped ZnO (SZO) nanorods such as the absorption coefficients, optical bandgaps, Urbach energies, refractive indices, dispersion parameters, dielectric constants, and optical conductivities were determined from the transmittance and reflectance results. In the PL spectra, the intensity of the NBE peak in the UV region decreases and is blue-shifted with an increase in the Sn content, while the DLE peaks of the nanorods in the visible region shift toward the low-energy region with the introduction of Sn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call