Abstract

Classic models of continental rifting predict that after continental break-up, the extended lithosphere returns to its original thermal state (McKenzie, 1978). At this time, the heat-flow should decrease from the proximal margin sectors, where the radiogenic crust is still relatively thick, towards its distal sectors, where the crust has extensively thin and the thermal lithosphere thickness approximates that of the adjacent untinned continental lithosphere. This should occur after approximately ~50 Myr for 120 km thick continental lithosphere (McKenzie, 1978). Although, good quality heat flow data is very scarce along margins, some of them, such as the Voring basin, show instead increasing heat flow towards the distal margin sectors ~60 Myr after break-up (Cunha et al., 2021). Recent numerical models have suggested, instead, that the lithosphere under the hyper-extended continental margins, does actually not return towards its original thermal thickness, instead it acquires a thickness which is similar to that of the adjacent plate, resulting in higher heat-flow towards the distal margins at ~80-100 Myr after break-up (Perez-Gussinye et al., 2023). In those models, the delay in thermal relaxation under the hyper-extended margins is caused by small-scale convections cells, a process which also prevents the oceanic lithosphere to infinitely cool and is responsible for the flattening of the oceanic bathymetry at old ages. Interestingly, the models show that the delay in thermal relaxation under both the hyper-extended rifted margins and the old oceanic crust increases with decreasing rifting and spreading velocity, such that is most obvious in ultra-slow margins and adjacent oceanic basins (Perez-Gussinye et al., 2023). Here we use updated 2D numerical models which include the thermal consequences of serpentinisation, melting and melt emplacement to understand the thermal evolution of oceanic plates and compare the resulting plate structure, heat-flow and bathymetry with the observations from seismic LAB structure, and global heat-flow and bathymetry databases.  

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call