Abstract

The influence of size of solvent molecules on the structural and thermodynamic properties of the interface between the electrode and electrolyte, using the solvent primitive model, was studied by grand canonical Monte Carlo (GCMC) simulations. The computer simulation results are compared with those obtained from the modified Poisson–Boltzmann (MPB) theory. The ionic singlet distribution functions show that the solvent molecules of low diameter favour the counter ion adsorption on the electrode. With increasing diameter of the solvent molecules, the mean electrostatic potential increases, while the integral and differential capacitances decrease. The integral capacitance curves obtained by MPB theory are in qualitative agreement with those obtained by the GCMC simulation although the theoretical results are overestimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.