Abstract

This study investigates green mussel filtration rates based on variation of the mussel size and density, and attempts to correlate these with the amount of Chaetoceros calcitrans consumed by kinetic modeling. The filtration rates were found to be more effective in small mussels and with greater volumes of seawater/mussel which represent low mussel densities in the mussel farms. Under field condition, the first order kinetic model is useful for evaluation of mussel filtration rate. However, the composite exponential kinetic model was determined to better describe filtration rates in a close system. Higher ratios of seawater volume L/g DW mussel tissue, resulted in an increasing filtration rate until a maximum plateau was reached at 10.37L/h/g DW tissue as determined by first order kinetics. Based on the filtration rate, carbon, nitrogen, and phosphorus uptake by green mussels were found to be 2128.72, 265.41, and 66.67mg/year/indv, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.