Abstract

The study aims to investigate the influence of the ferrule effect and types of posts on the stress distribution in three morphological types of the maxillary central incisor. Nine models were created for 3 maxillary central incisor morphology types: "Fat" type - crown 12.5 mm, root 13 mm, and buccolingual cervical diameter 7.5 mm, "Medium" type - crown 11 mm, root 14 mm, and buccolingual cervical diameter 6.5 mm, and "Slim" type - crown 9.5 mm, root 15 mm, and buccolingual cervical diameter 5.5 mm. Each model received an anatomical castable post-and-core or glass-fiber post with resin composite core and three ferrule heights (nonexistent, 1 mm, and 2 mm). Then, a load of 14 N was applied at the cingulum with a 45° slope to the long axis of the tooth. The Maximum Principal Stress and the Minimum Principal Stress were calculated in the root dentin, crown, and core. Higher tensile and compression stress values were observed in root dentin using the metallic post compared to the fiber post, being higher in the slim type maxillary central incisor than in the medium and fat types. Concerning the three anatomical types of maxillary central incisors, the slim type without ferrule height in mm presented the highest tensile stress in the dentin, for both types of metal and fiber posts. Post system and tooth morphology were able to modify the biomechanical response of restored endodontically-treated incisors, showing the importance of personalized dental treatment for each case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call