Abstract

Two ferrite series were synthesized. One series has nanosize samples that have been prepared by the co-precipitation method, and the second series has the corresponding bulk samples that have been sintered at 1000 °C for 6 h. X-ray diffraction has been used to estimate the cubic spinel structure of both series. The crystallite size, theoretical density, and porosity of the nanomaterials are larger than those of the bulk materials. HRTEM analysis demonstrated the aggregation of nanoscale samples, including an average particle size of 9–22.5 nm. However, bulk specimens have a limited surface area. The agglomeration of the nanoparticles was seen in TEM images, in which the mean particle size was within the limit of the crystallite size (R) result and ranged from 14 to 20 nm. The appearance of the spinel phase in the samples was validated through Raman spectroscopy. Different cation occupation ratios in either tetrahedral or octahedral sites have been identified to be associated with an observable systematic shift and asymmetric flattening in Raman spectra with a variation in Cr3+ concentration. The optical characterization was performed using the UV/Vis methodology, and the results reveal that the absorption cutoff frequency declines as the chromium content rises. It was also estimated that the optical bandgap averaged 3.6 eV for nanosamples and 4.6 eV for overall bulk materials. The highest photoluminescence emission was seen at wavelengths between λem = 415 and 460 nm. The photoluminescence emission peaks of both bulk and nanoscale materials were red-shifted. These results accurately reflect the corresponding energy gap values for almost the same ranges. Sintering leads to a rise in photoluminescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call