Abstract

In this work, glass-ceramics were produced with mechanical and physical properties, using recycled glass powder from windshields as raw material. The glass powder was formed and sintered at temperatures 600, 650, 700, 750, and 800°C. Pieces were also produced with the addition of niobium oxide to the glass powder. The flexural strength and the Archimedes density of the produced parts were determined. The reliability of the results was evaluated by the Weibull statistic. X-ray diffraction was performed. Maximum flexural strength was 77.64 MPa at 750°C, with the addition of niobium oxide at 43.86 MPa at 700°C. X-ray diffraction showed crystalline structures in the specimens with the addition of the nucleating agent, confirming the production of glass-ceramics in this composition. The pure glass powder only crystallized from 750°C. The Nb2O5 favors the formation of crystalline structures in the vitreous matrix at low temperatures and with piezoelectric structures.

Highlights

  • Because the consumption habits of the population have generated environmental problems such as the growth of landfills and depletion of natural resources [1, 2], scientific research has been much requested regarding the recycling of discarded materials, for finding new utilities and generating value from the waste [2,3,4,5]

  • It has greater stability, durability, superior mechanical properties, resistance to thermal shock, low coefficients of thermal expansion, and fracture toughness [11, 12]. It features a range of applications, including the manufacture of artificial bones and teeth, heat shock-resistant transparent pans, heat-resistant windows for stoves or ovens, building walls, and cooktops [13,14,15]. ere is a considerable amount of research focused on the production of glass-ceramics with industrial waste [2, 10, 16,17,18,19]. e work of Lu et al may be highlighted, which studied the influence of sintering and crystallization on the mechanical properties of glassceramics produced by glass and fly ash from thermal power plants

  • Groups 1, 2, and 3 are the glass powder (GP) specimens sintered at temperatures of 650, 700, and 750°C, respectively

Read more

Summary

Introduction

Because the consumption habits of the population have generated environmental problems such as the growth of landfills and depletion of natural resources [1, 2], scientific research has been much requested regarding the recycling of discarded materials, for finding new utilities and generating value from the waste [2,3,4,5]. Groups 1, 2, and 3 are the glass powder (GP) specimens sintered at temperatures of 650, 700, and 750°C, respectively. Groups 4, 5, and 6 are the glass powder and niobium oxide (GPN) specimens sintered at temperatures of 650, 700, and 750°C, respectively.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call