Abstract

In this work, Ba2MgWO6: Eu3+ (BMW: Eu3+) ceramic materials with a double perovskite structure were sintered using the High-Pressure Low-Temperature sintering (HPLT) technique. As part of the research, the influence of pressure (CP), sintering temperature (CT), and sintering time (CTS) on the structure and luminescence of the doped BMW were determined. Structural analysis via XRD and SEM + EDS and spectroscopic analysis via emission and excitation spectra, decay time, and absorption spectra of the obtained ceramics were performed. Dense double perovskite ceramics were obtained with a cubic structure with optimal sintering parameters: T = 500 °C, p = 8 GPa, and t = 1 min. The increase in temperature caused an increased extinction of the luminescence due to the diffusion of carbon into the ceramics. The increase in pressure led to the formation of the amorphous phase, which increased the speed of non-radiative transitions and also led to the extinction of the luminescence. The increase in sintering time from 1 to 3 min enhanced the luminescence output, but when the ceramic was sintered for 5 min, the luminescence was quenched, most likely by increasing the rate of the non-radiative process, as evidenced by reduced decay time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call