Abstract
Tensile and high cycle fatigue properties of Ti–6Al–4V samples fabricated by powder injection moulding (PIM) are examined at room temperature and elevated temperatures. Standard wrought Ti–6Al–4V material is used for comparison. The tensile and the fatigue strength of samples fabricated by powder injection moulding are found to be significantly lower than conventional wrought material. On the other hand, strength and ductility of metal injection moulded (MIM) samples are high enough to be of large practical interest, in particular if the low processing costs for intricate shapes are taken into account. The inferior properties of the MIM material are caused by considerable remaining porosity, enlarged grain size and increased interstitial content. Prolonged sintering times lead to improved density and strength. At the same time, the room temperature ductility is observed to drop to very low levels, presumably because of additional grain growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.