Abstract

Torch-plasma-grown single-walled carbon nanotubes (SWCNTs) are integrated with regioregular poly(3-hexylthiophene) (P3HT) and a fullerene derivative 1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61 (PCBM) as a hybrid photoactive layer for bulk heterojunction solar cell devices. We demonstrate that molecular information could be accurately obtained by time-of-flight secondary ion mass spectrometry throughout the hybrid organic photoactive solar cell layers when sputtering is performed using a Cs+ 2000 eV ion source. Furthermore, the photovoltaic (PV) performance of the fabricated devices show an increase in the short-circuit current density (Jsc) and the fill factor (FF) as compared to the pristine devices fabricated without SWCNTs. The best results are obtained with 0.5 wt. % SWCNT loads, where an open-circuit voltage (VOC) of 660 mV is achieved, with a Jsc of 9.95 mA cm−2 and a FF of 54%, leading to a power conversion efficiency of 3.54% (measured at standard test conditions, AM1.5 g). At this optimum SWCNT concentration of 0.5 wt. %, and to further understand the charge-transfer mechanisms taking place at the interfaces of P3HT:PCBM:SWCNT, Jsc is measured with respect to the light intensity and shows a linear dependency (in the double logarithmic scale), which implies that losses in the charge carrier are rather governed by monomolecular recombination. Finally, our results show that our hybrid devices benefit from the fullerene electron accepting nature and from the SWCNT fast electron transportation feature that improve substantially the exciton dissociation efficiency. The influence of the SWCNTs on the Fermi level and the work function of the photoactive composite and its impact on the PV performance is also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call