Abstract

Silybin (silibinin) is major biologically active flavonolignan extracted from milk thistle (Sylibum marianum). Its biological activities include hepato-protection, anticancer properties, and antioxidant- and membrane-stabilizing functions. Although membranes are postulated to be one of the cellular targets for silybin, little is known about its interaction with phospholipid bilayers. In the present work, the interactions of silybin with phosphatidylcholine bilayers were studied in detail using fluorescence spectroscopy, microcalorimetry and electron spin resonance techniques. The results showed that silybin interacted with the surface of lipid bilayers. It affected the generalized polarization of the fluorescent probe Prodan, while not influencing the more deeply located Laurdan. Silybin lowered the main phospholipid phase transition temperature as judged by microcalorimetry, and caused the immobilization of spin probe Tempo-palmitate located on the surface of membranes. The mobility of spin probes 5- and 16-doxyl stearic acid was not affected by silybin. Silybin-induced quenching of 1,6-diphenyl-1,3,5-hexatriene fluorescence indicated that some flavonoid molecules partitioned into the hydrophobic region of membranes, which did not change significantly the biophysical properties of the deeper membrane regions. Such a behavior of silybin in membranes is in accordance with its postulated biological functions and neglectable side effects of therapies using silybin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.