Abstract
Purpose: The aim of the presented work was to investigate the impact of the S-P introduction into resin-based composites on their effectiveness against Enterococcus faecalis (E. faecalis). Design/methodology/approach: Seven experimental composites based on typical matrix were developed. Six of them contained a filler with antimicrobial properties (silver sodium hydrogen zirconium phosphate, S-P), while the control material contained only common reinforcement fillers. The materials were characterized in terms of the dispersion of the extender in the matrix and then subjected to microbiological tests. The efficiency in the reduction of E. faecalis in the microenvironment was tested. Findings: The composites show a satisfactory distribution of fillers and a high initial reduction of bacteria colonies for the tested strain of E. faecalis. The reduction in bacteria colonies achieved for S-P concentrations from 7% to 13% was similar (median value from 99.8 to 99.9%, when for control material and compound with 1% S-P the number of colonies increased compared to positive control. Research limitations/implications: Laboratory test results may differ from in vivo test performance. In addition, there are many models for conducting laboratory antimicrobial efficacy studies, the results of which are also varied. The cytotoxic tests, long-term investigations and in vivo experiments need to be performed in future experiments. Practical implications: E. faecalis is a Gram-positive bacterium that is commonly detected in persistent endodontic infections and may enter the root canal through the coronal part. Development of composites with antimicrobial properties against this bacterium is as important as obtaining efficacy against cariogenic bacteria. Originality/value: The antimicrobial effectiveness against E. faecalis of experimental composites with submicrometer-sized particles of S-P was not investigated until now.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Achievements in Materials and Manufacturing Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.