Abstract

Abstract Biorelevant in vitro test systems may be helpful to understand the in vivo behaviour of modern intravitreal dosage forms such as implants and injections. The already presented Vitreous Model (VM) in combination with the Eye Movement System (EyeMoS) was used to simulate the situation after a vitrectomy in combination with Siluron® silicone oil (SO) insertion in vitro and to investigate the distribution of the model drug fluorescein sodium (FS) within the modified VM. The state after a vitrectomy was simulated in vitro by replacing half the volume of the gelled vitreous substitute by SO. Under consideration of simulated eye movements the position of SO towards the simulated vitreous body was examined. Furthermore, the influence of two different injection techniques was studied. On the one hand, FS was injected directly into the gel and on the other hand the injection was set through the gel in order to directly reach the SO. Independent of the injection technique, it was shown that the model drug distributed almost exclusively into the gel and not into the SO. This can be explained with the backflow of FS into the gel and the lack of solubility in the SO. Using the modified VM and EyeMoS, the in vitro characterization of drug release and distribution behaviour of intravitreal injections can be performed under consideration of a simulated vitrectomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.