Abstract

The stability of TiN which is the preferred bottom electrode contact (BEC) of phase change memory (PCM) due to its low thermal conductivity and suitable electrical conductivity, is very essential to the reliability of PCM devices. In this work, in order to investigate the effect of high aspect ratio process (HARP) SiO 2 on the performance of TiN, both TiN/SiO 2 , TiN/SiN thin films and TiN BEC device structures are analyzed. By combining transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), we found that the TiN would be oxidized after the deposition of HARP SiO 2 and there exist a thin (~4 nm) oxidation interfacial layer between TiN and SiO 2 . Electrical measurements were performed on the 1R PCM test-key die with 7 nm and 10 nm BEC-only cells. The statistical initial resistances of BEC have wide distribution and it is confirmed that the non-uniform oxidation of TiN BEC affects the astringency of the resistance of TiN BEC. The experimental results help to optimize the process of TiN BEC, and SiN is recommended as a better choice as the linear layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call