Abstract

AbstractSince power devices require a thick electrically active n-type silicon layer with high resistivity and a large area, their electrical characteristics are extremely sensitive to contamination. If heavy metals diffuse into the silicon wafers during the high-temperature steps, an uncontrolled increase in the leakage current and the on-state voltage can be observed. Furthermore, current filamentation and instabilities of the electrical data can occur. It turned out that the optimization of the cleaning processes, high-temperature steps and gettering treatments alone is not sufficient to avoid such effects. It is also important to avoid silicon crystal defects by proper processing. A dramatic increase in the leakage current was correlated with the appearance of silicon defects decorated with heavy metals. As a consequence of the low doping level of the n-base, the blocking voltage and the failure rate due to cosmic radiation are sensitive to contaminating atoms acting as donors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.