Abstract

Ceramic cores have been designed with compounds based on fused silica due to its excellent thermal stability and chemical inertness against molten metals. To endure the high temperatures present during investment casting, mineralizers have been widely used to enhance the flexural strength and shrinkage of ceramic cores. In this study, we demonstrated a silica-based ceramic core with silicon carbide as a mineralizer for improving the mechanical and thermal properties. The SiC in the silica-based ceramic cores can enhance the mechanical properties (i.e., flexural strength and linear shrinkage) by playing a role as a seed for the crystallization of fused silica to cristobalite. The SiC also improves the thermal conductivity due to its higher value compared with fused silica. The results suggest that using the optimal amount of silicon carbide in silica-based ceramic cores can provide excellent mechanical properties of flexural strength and linear shrinkage and improved thermal conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.