Abstract
Radiation crosslinking of polymers has gained importance over conventional crosslinking because the system is fast, pollution free and relatively simple. In high energy electron beam curing, which is one of the radiation curing methods, the material to be cured is bombarded with electrons of specified energy to produce free radials. These radicals unite to give rise to chemical crosslinks. In the process, some unwanted chain scission may also occur. The mechanical properties of such electron beam crosslinked systems can further be improved by the incorporation of nanosilica. In this work, a high vinyl (~50%) S-B-S block copolymer incorporated with varying doses of specific hydrophilic nanosilica was irradiated with electron beam at 25 and 50 kGy. Mechanical properties were studied and compared with that of the unirradiated system. The influence of a silane coupling agent was also investigated. Morphological studies were done to understand the dispersion of nanosilica in the polymer matrix. Relatively moderate amounts of nanosilica along with an optimum dose of the coupling agent were found to be effective in improving the properties. Rheological properties were also studied in details to understand the possibility of recycling the polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.