Abstract
Natural lignocellulosic fibers (NLFs) have been extensively investigated and applied as reinforcements for polymers composites owing to improved properties associated with their cost-effectiveness and their sustainable characteristics as compared to synthetic fibers. However, an intrinsic difficulty of the hydrophilic NFL adhesion to a hydrophobic polymer matrix is still a major limitation, which might be overcome via fiber surface treatments. Among the less-known NLFs, sponge gourd (Lufta cylindrica) is a promising reinforcement for polymer composites owing to its natural network of intertwined fibers. The present work investigated for the first time the influence of a chemical treatment using silane as a coupling agent for 30 wt.% sponge gourd incorporated into a polyester matrix composite. The novel composite performance was compared with that of an untreated fiber composite via X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), Charpy impact tests, and thermogravimetric analyses (TGA). The XRD results revealed that the silanization increased the crystallinity index by 37%, which attests to the effective fiber–matrix interaction stretching of the C-H bond, as observed in its FTIR band. The silanization also increased the mean impact resistance by 10%. Although the temperatures associated with the beginning of the thermal degradation by the TGA were not affected, both the silane-treated fibers and composite displayed less thermal degradation compared with the untreated fibers. The scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) results disclosed an improved sponge gourd fiber morphology after the silanization, which caused greater adherence to the polyester matrix. These results revealed a promising novel composite compared with other NLF polymer composites in engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.