Abstract

This study focuses on the usage of silane-modified palm oil (Si-m-PO) to replace petroleum-based processing oils, i.e., distillate aromatic extract (DAE) and treated distillate aromatic extract (TDAE), in silica-reinforced styrene butadiene rubber/butadiene rubber (SBR/BR) compounds for green tire tread products. The preparation of a novel processing oil based on Si-m-PO was successful on the laboratory scale, as verified by nuclear magnetic resonance, where the grafting efficiency of silane in oil molecules was 58%. Among the different types of processing oils, the presence of Si-m-PO in the compounds resulted in lower filler-filler interactions than the ones with TDAE and unmodified PO but higher than DAE. The Si-m-PO showed an effective reduction in filler–filler interaction compared to unmodified PO, possibly because the Si-m-PO could cover silica surfaces via silane linkage, leading to hydrophobicity of silica surfaces. Overall, the compounds containing Si-m-PO represented higher mechanical properties than the other oils. Furthermore, the Si-m-PO provided the same level concerning rolling resistance and enhanced wet traction, when compared to unmodified PO. Therefore, Si-m-PO can be applied as a biobased processing oil in tire tread applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call