Abstract

In this study, the influence of silane coupling agents, featuring different organo-functional groups on the interlaminar and thermal properties of woven glass fabric-reinforced nylon 6 composites, has been by means of shortbeam shear tests, dynamic mechanical analysis, scanning electron microscopy, and thermogravimetric analysis. The results indicate that the fiber-matrix interfacial characteristics obtained using the different analytical methods agree well with each other. The interlaminar shear strengths (ILSS) of glass fabric/nylon 6 composites sized with various silane coupling agents are significantly improved in comparison with that of the composite sized commercially. ILSS of the composites increases in the order: Z-6076 with chloropropyl groups in the silanes >Z-6030 with methacrylate groups >Z-6020 with diamine groups; this trend is similar to that of results found in an earlier study of interfacial shear strength. The dynamic mechanical properties, the fracture surface observations, and the thermal stability also support the interfacial results. The improvement of the interfacial properties may be ascribed to the different chemical reactivities of the reactive amino end groups of nylon 6 and the organo-functional groups located at the ends of the silane chains, which results from the increased chemical reactivity in order chloropropyl >methacrylate >diamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call