Abstract

We investigate the electronic and magnetic properties of Fe2MnGa1−x Si x alloy (x = 0, 0.25, 0.5, 0.75, and 1) using first-principles density functional theory within the generalized gradient approximation method. The lattice constant decreases linearly whereas bulk modulus increases with increasing Si content. The total magnetic moment varies linearly with increasing Si content, which follows the Slater-Pauling rule. Electronic band structure calculations indicate that the Fe2MnGa1−x Si x exhibits half-metallic character for all the concentrations studied and the spin polarization and the spin-down band gap both increase with the Si content. Based on the magnetic properties calculations, the Heisenberg exchange coupling parameters give Fe-Mn ferromagnetic coupling and Mn-Mn antiferromagnetic coupling. The T C first decreases and then increases with Si content, which is in well agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.